Word of the Day

Macromolecule:

large molecule

4 Biological Macromolecules

- 1. Carbohydrates
- 2. Lipids
- 3. Proteins
- 4. Nucleic Acids

ALL CELLS:

- USE nucleic acids (DNA) to store information
- USE proteins (enzymes) for chemical reactions
- USE lipids (fats) for the cell membrane & long-term energy storage
- USE carbohydrates for cell walls (if present) and short-term energy

Macromolecule	monomer	polymer
Carbohydrates	monosaccharide	polysaccharide
Proteins	Amino acids	Polypeptide chain
Nucleic Acids	nucleotides	DNA or RNA
Lipids*	Glycerol and fatty acids	triglycerides

Where do the macromolecules come from?

- Some cells can:
- make all of the monomers
- get monomers from food
- change other compounds into monomers

A. Carbohydrates All have general formula $C_n H_{2n} O_n$ $C_6H_{12}O_6$ Glucose

Carbohydrates

• Provide Cell structure:

Chit

Male blue crab. Note his blue tipped claws.

Chitin in exoskeleton

Cellulose in plant cell walls

Lipopolysaccharides (LPS) in bacterial cell wall

Carbohydrate Structure: Monomers

Carbohydrate Structure

• Monosaccharides can link to form disaccharides

Examples of:

Complex Carbohydrates

- Cellulose
 - Most abundant carbohydrate on the planet!
 - Makes up plant cell walls
 - Indigestible by animals
- Starch
 - Energy storage molecule in plants
 - Can be digested by animals
- Glycogen
 - Animal energy reserve
 - Found primarily in liver and muscle

B. Lipids

- Lipids
 - Fatty acids (Polymers of CH₂ units)
 - Glycerol

Lipids

Function

- Long-term Energy Storage
- Make up cell membranes and cell compartments

C. Proteins

- Proteins serve many essential roles in the cell
 - Monomer is amino acid
 - 22 naturally occurring amino acids
 - The different order of these amino acids make proteins

Protein Function

Some examples

- Structure
 - Lamins, collagen, keratin......
- Movement -
 - Micro-tubueles, actin, myosin
- Transport-regulate transport
 Channels, receptors, dynin, kinesin
- Communication
 - Hormones
- Chemical Catalyst
 - Enzymes (thousands of different enzymes)
- Defense
 - Antibodies, cellular immune factors
- Regulatory
 - Checkpoint proteins, cyclins, transcription factors

D. Nucleic Acids

- DNA –deoxyribonucleic acid
- RNA –ribonucleic acid

Monomer: nucleotide

Function of Nucleic Acids

- Nucleic Acids
 - Information Storage
 - DNA / RNA
 - Information transfer / Recognition
 - rRNA / tRNA / mRNA

