How do scientists communicate with each other? Lab reports

Title (Should be centered):

Tell the reader specifically what your experiment is investigating.

"Oreo Cookie Lab"

"The Amount of Filling in Regular Versus Double-Stuffed Oreos"

B. Research Question:

- Must be a clear, focused, testable question. This is the question that your lab is trying to answer.
- Does a double-stuffed Oreo really have twice the filling of a regular Oreo?

C. Hypothesis

A.

- "If.... then..."
- Not a question.
- If a double-stuffed Oreo really has double the filling, then the mass of the filling will be twice that of a regular Oreo.

D. Variables

- <u>Independent Variable</u>
 - What YOU are changing in the experiment. Think: "I change the independent variable."
 - ONE independent variable in an experiment. Double Stuffed Oreo
- Dependent Variables
 - What you measure. The amount of filling in the cookie (mass measured in grams)
 - Think: "The dependent variable depends on what you change."
- Constant Variables
 - These are kept the same between the two groups you are testing.
 - Experiments have MANY constant variables. Electronic balance, Oreo brand, room temperature, etc...
- Control Group
 - This is the group that is compared against the independent variable group.
 - No "treatment." Regular Oreo

E. Materials

• A list of all the items you need to complete your experiment.

F. Procedure

- Step-by-step of directions list to complete the experiment. Precision and detail is important. Can include pictures/diagrams.
- Anyone should be able to exactly re-create your experiment following your procedure.

G. Data

- Organize it in a chart.
- · Must have: specific title, units, headings for columns and rows, and percentages/averages if appropriate

H. Graph

- Three things all graphs need: title, units, axis labels
- Must be appropriate to the data (line graph for trends over time, bar graphs for quantities whole number units, etc)
- X axis: Independent variable
- Y axis: Dependent variable
- · Even spacing is important!

I. Conclusion (Claim, Evidence, Explanation)

- CLAIM: Your first sentence. This sentence answers your research question.
- EVIDENCE: Specifically refer to your supporting data
 - "See graph" or "See data" is not enough here. You must describe the important data in words
- Explanation
 - Clearly explain the meaning of your results. Explain why your claim makes sense.
 - Is your hypothesis supported or refuted? Discuss. (it's OK if your hypothesis was refuted!)
 - Propose reasons WHY you got the results you did, especially if the results surprised you.
 - Address possible sources of error in your experiment (EVERY experiment has them).
 - Offer ideas for further research. If given the time, how might you continue this line of inquiry?
 - Use vocabulary and concepts we've learned in class.